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A B S T R A C T

Our interactions with the visual world are guided by attention and visual working memory. Things that we look
for and those we ignore are stored as templates that reflect our goals and the tasks at hand. The nature of such
templates has been widely debated. A recent proposal is that these templates can be thought of as probabilistic
representations of task-relevant features. Crucially, such probabilistic templates should accurately reflect feature
probabilities in the environment. Here we ask whether observers can quickly form a correct internal model of a
complex (bimodal) distribution of distractor features. We assessed observers’ representations by measuring the
slowing of visual search when target features unexpectedly match a distractor template. Distractor stimuli were
heterogeneous, randomly drawn on each trial from a bimodal probability distribution. Using two targets on each
trial, we tested whether observers encode the full distribution, only one peak of it, or the average of the two
peaks. Search was slower when the two targets corresponded to the two modes of a previous distractor dis-
tribution than when one target was at one of the modes and another between them or outside the distribution
range. Furthermore, targets on the modes were reported later than targets between the modes that, in turn, were
reported later than targets outside this range. This shows that observers use a correct internal model, re-
presenting both distribution modes using templates based on the full probability distribution rather than just one
peak or simple summary statistics. The findings further confirm that performance in odd-one out search with
repeated distractors cannot be described by a simple decision rule. Our findings indicate that probabilistic visual
working memory templates guiding attention, dynamically adapt to task requirements, accurately reflecting the
probabilistic nature of the input.

1. Introduction

Our senses are constantly bombarded with an overwhelming
amount of information that needs to be filtered by the brain to guide
action. This information, however, is not completely chaotic. For ex-
ample, leaves on a tree usually have similar colors, and colors within a
single leaf would be more similar to each other than to another leaf.
Probabilistic models of vision (Bejjanki, Beck, Lu, & Pouget, 2011;
Feldman, 2014; Girshick, Landy, & Simoncelli, 2011; Kersten,
Mamassian, & Yuille, 2004; Ma, 2012; Rao, Olshausen, & Lewicki,
2002) suggest that the brain utilizes existing correlations in the en-
vironment and uses them in perception. However, some of the incoming

information is not relevant for current behavior, and it is important to
reject it while processing other stimuli in more detail. Traditionally, the
rejection of irrelevant information within a specific feature dimension
(e.g., orientation) is thought to be based on specific feature values
(Woodman, Carlisle, & Reinhart, 2013). Here we ask whether such re-
jection can instead be based on probabilistic templates and whether
such templates accurately reflect the probabilities of distractor features.
If this is the case, then probabilistic inference in the brain does not start
with perception, but sooner, when to-be-rejected templates are formed
(based on previously encountered stimuli) to optimize the prioritization
of what is perceived.

Imagine a radiologist looking for signs of tumor in x-ray scans.
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Malignant signs can take many forms so the targets to look for are di-
verse. By many accounts, search in this and other contexts is thought to
be guided by templates held in visual working memory (Woodman
et al., 2013). These templates reflect what one should look for, but may
also reflect what should be ignored (Arita, Carlisle, & Woodman, 2012;
Won & Geng, 2018). For example, distractors such as the rib cage on a
lung scan are salient but not informative and radiologists can therefore
ignore them. It is well known that information about to-be-ignored
stimuli or features is kept in memory, but the way they are represented
is still unknown.

There are capacity limits in the amount of information that can be
stored in visual working memory templates (Bundesen, 1990; Grubert &
Eimer, 2013; Vickery, King, & Jiang, 2005), with some authors even
suggesting that only one template containing a single feature value can
guide attention at any given time (Oberauer, 2002; Olivers, Peters,
Houtkamp, & Roelfsema, 2011; van Moorselaar, Theeuwes, & Olivers,
2014). Alternatively, templates could be conceptualized as probabilistic
entities of varying precision (Bays, 2015) rather than matches to exact
feature values. While previous studies found some support for this,
observers typically reported features of single items (Ma, Husain, &
Bays, 2014). However, in the real world such isolated features practi-
cally never occur. Furthermore, with a few exceptions (Arita et al.,
2012; Won & Geng, 2018), templates for ignored information are rarely
studied. For any inference based on the probabilistic representations, it
is crucial that the internal model used by observers accurately reflects
the environment. Here, we provide strong evidence for the probabilistic
template view by showing that visual working memory templates for
rejection mirror the probability distribution of distractor features.

Our observers searched for two oddly oriented targets among dis-
tractors randomly drawn from a bimodal orientation distribution. To
expose observers’ templates, after a sequence of learning trials with
distractors randomly drawn from a bimodal distribution, targets on test
trials could either correspond to regions of feature space previously
used for distractors, fall in between the modes of the bimodal dis-
tribution, or have feature values outside the previous distribution
range. We assume that observers’ templates reflect what has been re-
levant on recent trials. If templates contain features of distractors to be
ignored, which then become targets on test trials, search should be
slower than otherwise (Chetverikov, Campana, & Kristjánsson, 2016;
Kristjánsson & Driver, 2008; Lamy, Antebi, Aviani, & Carmel, 2008;
Maljkovic & Nakayama, 1994; Wang, Kristjánsson, & Nakayama, 2005).
Crucially, experiments with varied set size and trial numbers show that
learning in this paradigm cannot be explained by the sampling of a few
items (Chetverikov, Campana, & Kristjánsson, 2017b; Chetverikov,
Campana, & Kristjánsson, 2017d). It also cannot be explained by simple
decision rule learning (e.g., all stimuli that have features in a certain
range are distractors), because observers response times, on average,
reflect the shape of the distractor distribution rather than just a
boundary between a target and distractors (Chetverikov, Campana, &
Kristjánsson, 2016, 2017b, Chetverikov, Campana, & Kristjánsson,

2017c; Chetverikov, Hansmann-Roth, Tanrikulu, & Kristjansson, 2019).
However, it is not yet clear whether each single set of learning trials can
feed observers’ templates with the feature probability distribution of
distractors, nor is it clear how accurately the information is stored in
the templates.

Under the strong probabilistic template hypothesis, templates would
include information about both peaks of a bimodal distribution. That is,
observers would develop an accurate internal model for the task and the
template would accurately reflect the information about the full prob-
ability distribution. Alternatively, templates might include only a single
peak (e.g., the attended one), or might reflect only the summary sta-
tistics, such as the averages of the whole distribution (Alvarez, 2011).
Using a two-target search task we were able to test whether observers
encode both peaks of a distribution following a single learning se-
quence. The predictions of these models (see Simulations) are qualita-
tively different regarding both the order in which targets are reported
in a two-target search, and search times. If observers accurately encode
a bimodal distribution, on trials with a target on a peak and target
between peaks, targets between the peaks (associated with a lower
distractor probability) should be reported before targets on peaks (as-
sociated with the highest distractor probability, Fig. 1A). In contrast, if
only one peak is encoded or if the whole distribution is averaged, tar-
gets on peaks would be associated with a lower distractor probability
and should be reported no later than targets between the peaks (asso-
ciated with lower distractor probability in this case). Notably, while all
three hypotheses postulate that observers can use probabilistic in-
ference, only the first one assumes that the distractor probability dis-
tribution is encoded accurately, that is, that the observers use relatively
accurate probabilistic templates.

2. Experiment

2.1. Ethics statement

The study was approved by the ethics committee of St. Petersburg
State University (#75, 21.06.2017). All participants signed a consent
form before taking part in the study.

2.2. Participants

Fifteen observers (ten female, age M= 25.67) at St. Petersburg
State University, Russia, participated voluntarily in a single experi-
mental session lasting approximately 30 min. The data from two ob-
servers were excluded because their response times on test trials were
too slow (M = 1464 and M=1871 ms), compared with other observers
(M =1064 ms). Following our previous studies (Chetverikov et al.,
2016, 2017b, 2017c, 2017d), the design of this study utilized within-
subject comparisons with a relatively small number of trained observers
(each observer was trained for at least 100 trials before the main ses-
sion) performing a large number of trials. The sample size and the trial

Fig. 1. Panel A: The same physical bimodal distribution can be represented in different ways. Panel B: Example learning and test trials with distractor distributions
and targets shown on the left.
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numbers were similar to those in previous studies using the same
paradigm.

2.3. Method

We used a task similar to our previous studies (Chetverikov et al.,
2016, 2017b). Stimuli were presented on an Acer V193 display (19″
with 1280 × 1024 pixel resolution) using PsychoPy 1.84.2 (Peirce,
2007, 2009). Viewing distance was ∼ 60 cm. Observers searched for
two oddly oriented lines in a 6 × 6 grid of 36 lines subtending 16°×16°
at the centre of a display. The length of each line was 1.41°. Line po-
sitions were jittered by randomly adding a value between±0.5° to
both vertical and horizontal coordinates.

Observers were instructed to search for two targets on each trial,
with targets being the stimuli that were most different from all the
others (“odd-one-out” search (Maljkovic & Nakayama, 1994)). Targets
were randomly distributed between the four quadrants of the search
display with the constraint that the two targets on a given trial could
not appear in the same quadrant. Observers reported the locations of
the targets by pressing one of four keys (‘f’, ‘g’, ‘r’, ‘t’ on a standard
keyboard) corresponding to the quadrants of the search display. They
were informed that two targets would be presented on each trial and
were encouraged to respond to each target as soon as they found it and
not wait until both targets were found.

Trials were organized in intertwined prime and test ‘streaks’. During
prime streaks, distractors were randomly drawn from a bimodal dis-
tribution that included two uniform parts with orientations ranging
from -30 to -20 and +20 to +30 relative to the overall mean. The
distribution mean was the same within streak but chosen randomly
between streaks. Target orientations were selected randomly on each
trial with the restriction that the distance between target orientation
and distractor mean in feature space was 60 degrees at minimum. Prime
streak length was set to 6–7 trials (with equal probability) because this
streak length is sufficient to learn bimodal distributions with relative
accuracy (Chetverikov et al., 2017b).

Within test streaks, distractor orientations were randomly drawn
from a truncated Gaussian with SD = 10 deg. and range 20 deg. Test
streaks had one or two trials (with equal probability). Different target
types were used on test trials: targets were either located on a peak of
the previous bimodal distribution (“Peak”, at +/-25 deg. relative to the
previous distractor mean), between the peaks (“Between”, at 0 deg.) or
outside the previous distribution range (“Outside”, at +/- 50 deg.).
Four types of test streaks were used: 1) with two targets either on two
different peaks (“Peak + Peak”); 2) on a peak and in-between the peaks
(“Peak + Between”); 3) on a peak and outside the previous distribution
range (“Peak + Outside” – where the “outside” target was always 25
deg. away from the target peak, that is, either the two targets were
oriented at +25 and +50 deg. or -25 and -50 relative to the previous
distractors’ mean); 4) between the peaks and outside the range
(“Outside + Between”). These four test types were presented equally
often (40 repetitions by participant) in random order. The distractor
mean was chosen to be equidistant from both test targets. The second
test trial is not analyzed here as the priming effects from the learning
streak are not likely to be significant after the first two-target test
search. Two-trial test streaks were added for consistency with previous
studies and in order to reduce the potential effects of observers’ ex-
pectations regarding streak lengths.

Observers participated in one session of approximately 1300 trials.
Decision time was not limited but participants were encouraged to re-
spond as quickly and accurately as possible. Feedback based on search
time and accuracy on previous trials was shown in the upper-left corner
of the screen to motivate participants (see Chetverikov et al., 2016, for
details on feedback score calculation). The current trial number and the
total number of trials were shown beneath the score. If observers made
an error, the word "ERROR" appeared in red letters at display centre for
1 s.

In addition to this two-target search experiment, we also ran a
single-target search study (see Supplementary Experiment). The latter
was used as a comparison for the single-target search time analyses to
ensure that the introduction of a second target and specific conditions
of the main experiment did not affect the pattern of results.

3. Results

3.1. Overall performance

On learning trials, observers found both targets in most cases
(M= 0.72 [0.67, 0.77]), though the share of trials where only one
target was reported was high (M = 0.27 [0.22, 0.31]; both targets were
reported incorrectly on 1% of trials). On test trials, observers reported
both targets correctly on M= 0.91 [0.89, 0.93] trials (accuracy was
comparable to the results of single-target search in the Supplementary
Experiment). The delay between the report on the first and the second
target was relatively short, but longer on learning than on test trials
(M= 263 [198, 326] vs. M= 176 [130, 233], respectively, t(12.0)
= 4.13, p= .001). Similarly, the first target was reported later on
learning than test trials (M = 973 [854, 1103] vs. M= 826 [753, 904],
respectively, t(12.0) = 5.23, p < .001).

The learning effects were also comparable to those from the single-
target search experiment (see supplement). A linear mixed-effects re-
gression with Helmert contrasts (comparing each trial with the average
of the following trials) showed that the first trial was slower, (B = 0.11,
SE = 0.01, t(52.57) = 9.61, p<0.001) and less accurate (B = -0.04,
SE = 0.02, t(13.12) = -2.62, p = 0.021) than the later trials. The
follow-up trials did not differ from one another.

3.2. Test trials

Replicating previous results, search times differed depending on
target type (F (2, 24) = 8.28, p = .003, η 2

G = .02, see Fig. 2A). Ob-
servers search longer for “Peak” targets compared to “Between” targets,
which were in turn, found later than “Outside” targets. Crucially, a
repeated-measures ANOVA indicated that the time needed to find both
targets on test trials was affected by the condition (F(3, 36) = 6.66,
p = .002, η 2

G = .02, Fig. 2B). Comparisons between conditions with
the same feature difference between the targets showed that perfor-
mance on “Peak + Peak” trials was slower than on “Outside + Be-
tween” trials (t(12.0) = 3.10, p= .009), while “Peak + Between”
trials were not different from “Peak + Outside” (t(12.0) = -1.68, p =
.118) trials. Finally, the “Peak + Peak” condition was also slower than
the “Peak + Between” condition (t(12.0) = 2.58, p= .024).

We then analyzed which type of target was reported first in each
condition using a binomial mixed-effects regression. The results showed
that targets on peaks were reported after targets between the peaks (Z
= -2.01, p= .044, Fig. 2C) or targets outside the preceding distribu-
tion range (Z = -2.43, p = .015), while the latter were reported earlier
than targets between the peaks (Z= 2.08, p= .037).

In sum, search with two targets on the peaks was the most difficult.
A comparison of the “Peak + Between” and “Peak + Outside” condi-
tions showed only a numerical difference in total RT. However, in the
“Peak + Between” condition, targets on peaks were reported later than
targets between the peaks, whereas in the “Outside + Between” con-
dition targets between the peaks were reported later than the “Outside”
targets. This shows again that targets on peaks were the most un-
expected for observers, followed by targets between the peaks, followed
in turn by “Outside” targets that led to the fastest search times.

3.3. Simulations

We simulated the predictions from three models (Fig. 2E–F; the si-
mulation code is available at https://osf.io/rg2h8). For our main model
of interest, the “bimodal” model, we assumed that the probabilities of
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different distractors can be represented by two Gaussian templates (for
simplicity, we ignore the fact that the stimuli distributions might be
more accurately represented by non-Gaussian templates (Chetverikov,
Campana, & Kristjánsson, 2017a)) centered on the means of distractor
distribution segments. We assumed that observers utilize the knowledge
they obtained about distractors and targets optimally. To find a target
in a localization search task, an ideal observer, would compare the
probability that a given noisy measurement of orientation x at each
location L is a target versus the probability that it is a distractor (Ma,
Navalpakkam, Beck, van den Berg, & Pouget, 2011; Ma, Shen,
Dziugaite, & van den Berg, 2015):

∝ =p Lx p L
p x T
p x D

p L
p x s p s T ds
p x s p s D ds

( ) ( )
( | )
( | )

( )
( | ) ( | )
( | ) ( | )

L L L

L L L

where sL is a true stimulus value at this location, p(L) is the probability
that a target is presented at this location, T and D are the parameters of
target and distractor distributions, respectively. In our simulations, we
assumed that internal representations of target and distractor dis-
tributions are independent and response times are inversely propor-
tional to the amount of evidence p(L|x). Given that all locations in our
experiment were equiprobable, that is, p(L) is the same for all locations,
response times will, on average, be proportional to the probabilities of

the test target θT under given distractor template parameters:

∝RT p θ D( | )T

The width of the Gaussian templates was estimated by fitting the
model to single-target response time data. To increase the robustness of
the estimates, we used an approach similar to bootstrap aggregating
(“bagging”), often employed in machine learning (Breiman, 1996). For
each model we obtained 500 bootstrapped samples grouped by parti-
cipant (that is, on each iteration, sampling with replacement was done
for each subject and then the samples were combined). We then esti-
mated the template widths for each sample by fitting response times as
a linear function of the stimuli probability. For a “bimodal” model:

= + ⎛
⎝

+ ⎞
⎠

RT a b p θ μ σ p θ μ σ1
2

( | , ) 1
2

( | , )T T T1 1 2

where μ1 = 25 and μ2 = -25, the means of bimodal distractor dis-
tribution peaks, and a and b are the scaling parameters necessary to
translate the probabilities into response times. The template widths
obtained for each sample were then averaged to get the resulting esti-
mates. Estimated template widths were similar for the experiment re-
ported here (18 deg.) and the supplemental experiment (21 deg.).

For the “single-peak” model, we assumed that only one of the two

Fig. 2. Experimental results and best-fitting predictions of the models (see Simulations). A: Results for different target types from the main Experiment (average
search times ignoring the order in which the targets were reported) and the supplementary Experiment where observers searched for only one target on each trial. B:
Results for two-target search from the main Experiment. C: Results for the order of target reporting from the main Experiment. D-F: Predictions for single-target
search times, search times for two targets, and for the order in which targets would be reported in a two-target search. For A–C large dots show group means, bars
show their 95% confidence intervals, smaller dots show individual observers’ means, and shaded areas show distributions of individual observers’ means.
Abbreviations: RT – response times, P - target on a peak, B - target between the peaks, O - target outside the range of previous distractor distribution. The plus sign
indicates that two targets of corresponding types are used. For the order of reporting, X|A + B means that target type X was reported first when target types A and B
are combined.
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peaks was encoded (with the same approach as with the “bimodal”
model). Given that the peak means are equidistant to the overall dis-
tractor mean:

= +RT a b p θ μ σ( ( | , ))T T1 1

The estimated template widths were 27 and 22 deg. for the main
and the supplemental experiment.

Finally, the “averaged” model was based on the idea that observers
might use a single set of summary statistics to represent the stimuli.
Accordingly, we assumed that observers use a single Gaussian template
centered at the mean of the overall bimodal distribution:

= +RT a b p θ σ( ( |0, ))T T1

The template width was also obtained using ML optimization and
bootstrapping. For the main experiment the estimated width was 114
deg., while for the supplemental experiment it was 140 deg. (i.e., al-
most flat template), already suggesting that this model provides a poor
fit to the experimental data.

We then used the estimated template widths to obtain the predic-
tions of the three models for the search times for different target types
(Fig. 2D), total search time for two targets in different conditions
(Fig. 2E), and for the order in which the targets should be reported
(Fig. 2F). For single-target search the equations were the same as when
we estimated the template widths, however, we used the data averaged
by target type for each subject to reduce the effect of trial-by-trial
variability. Two-target search times were assumed to be proportional to
a sum of two search times predicted in the same way as for a single
target:

= + +RT a b p θ D p θ D( ( | ) ( | ))T T T2 1 2

where D reflects the distractor distribution parameters for a given
model, that is, the template mean(s) and its estimated width(s).

Finally, we assumed that all other things being equal, the order in
which the targets are reported would depend on the ratio of the prob-
abilities of observing the test targets under the given distractors tem-
plate:

⎜ ⎟= + ⎛
⎝

⎞
⎠

P find T first k log
p θ D
p θ D

( 2 ) 0.5
( | )
( | )

T

T

1

2

with k as a scaling constant. The ratio was transformed to logarithm to
allow for both positive and negative values.

Fig. 2D and E shows that the bimodal model provided more accurate
predictions for response times than the other models. For single-target
response times, it accurately predicted that targets on peaks would be
the hardest to find and targets between the peaks would be harder to
find than targets outside the range of previously learned distractors. In
contrast, the averaged model (ΔBIC = 5.94; here and later ΔBIC refers
to the difference in Bayesian Information Criterion compared to the
bimodal model, positive values meaning that the bimodal model has
better fit) suggested that the targets in-between the peaks would be
hardest to find, while the single-peak model (ΔBIC = 12.47) predicted
relatively similar response times for between targets and targets on
peaks. For two-target RTs, the bimodal model failed to predict slower
search for the “outside + between” condition compared to the “peak
+ outside” condition. Note, however, that this difference was also not
significant in our results. Speculatively, it might be a result of a higher
similarity between the targets in the latter than in the former. Never-
theless, the predictions of the bimodal model were still better than of
the averaged (ΔBIC = 8.04) or the single-peak model (ΔBIC = 6.59).

Crucially, the bimodal, single-peak, and averaged models gave
qualitatively different predictions for the order in which the targets
would be found. For both the single-peak and averaged model, the
probability of first reporting targets between the peaks when combined
with targets on peaks was below 0.5 (Fig. 2C). As outlined in the in-
troduction, when observers encode only one peak, on 50% of the trials,
the “peak” target on test trials should be on this peak while in the other

half of the trials it will be on the non-encoded peak. Depending on the
width of the template, the average ratio of the probabilities for a target
would vary: with very large or very small template widths, it will be
close to 0.5 because targets between the peaks and at the non-encoded
peaks will be equally probable, and with intermediate template widths
it will be below 0.5 (note that this conclusion is not limited to the
specific equation we used for determining the probability of finding one
target before another; in fact, it could be shown that this is the case for
any monotonic function describing the transformation of a ratio of
probabilities of observing the target under a given Gaussian distractor
template into average probability of a given reporting order). For the
averaged model the target between the peaks should always be reported
later than targets on the peaks. In contrast, for the bimodal model that
accurately encodes the probabilities of distractors, the target between
the peaks should be reported before the target at the peak. Accordingly,
the bimodal model describes the results better than the single-target
(ΔBIC = 13.11) or the averaged model (ΔBIC = 6.86).

4. Discussion

Can observers develop an accurate internal model for the prob-
abilities of to-be-ignored items in a visual search task? We assessed the
content of templates guiding visual search in the orientation domain, by
measuring slowing for targets drawn from a preceding distractor or-
ientation distribution. The distribution was bimodal and the searches
used to probe the representations involved two simultaneous targets
within a trial. Response times were slower when the targets corre-
sponded to the two modes (“peaks”) of previous distractor distributions
than when one target was from one of the modes and another from
between them, while the latter combination of targets resulted in
slower search than when one of the targets was outside the previous
distractor range. Furthermore, the order in which the targets were re-
ported on a test trial followed the distractor probabilities observed
during prime trials. Targets outside the previous distractor range were
reported earlier than the ones between the modes, while the latter were
reported before the targets at the modes of previous distractor dis-
tribution. The search times and the order in which targets are reported
allowed us to assess the internal model used by observers.

We simulated the predictions of a bimodal, single-template, and
averaged template models. The first model accurately reflects the actual
distribution of distractor features, while the other two oversimplify it in
different ways. We found that the bimodal model predicts the response
times pattern for different target types and different conditions far
better than the other models. Moreover, only the bimodal model could
accurately predict the order in which the targets were reported. Both
the single-template and the averaged-template model predicted that the
target between the peaks should on average be reported after the tar-
gets at the peaks, while the reverse was accurately predicted by the
bimodal model. The target between the peaks in the “Peak + Between”
condition was on average reported before the target at one of the peaks.
This shows that observers simultaneously represent both modes of
distractor distributions. Their representations approximate the physical
stimuli, and they fill in the gaps in probability space as demonstrated by
slower responses when one of the targets was between the peaks
compared to when it was outside the previous distractor range, or on
the peaks.

Notably, all three models can be considered probabilistic in a sense
that they do provide observers with a measure of probability that a
certain feature belongs to a distractor class. The difference is in the
degree of simplification. The bimodal model reflects the probability
distribution accurately (with the assumption of Gaussian approxima-
tion). The two other models taken into consideration, however, diverge
from an accurate representation in different ways: the “averaged” as-
sumes the use of overall summary statistics, while the “single-peak”
assumes the encoding of only one part of the distribution (which could
be caused, for example, by biased sampling). Furthermore, every
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heuristic or decision rule can be cast in terms of probabilities (e.g., a
delta function that assigns probability of 1 for one part of feature space
and 0 for the rest). Here we show that the representations used by
observers mirror the probability distribution of the stimuli.

Unlike previous studies assessing how distracting information is
stored in visual working memory (Arita et al., 2012; Won & Geng,
2018), the distractors in our studies were heterogeneous and were
generated randomly based on a bimodal probability distribution.
Nevertheless, observers were able to integrate the information about
distractors into an approximate bimodal representation. Speculatively,
this demonstrates that using homogeneous distractors may be an arti-
ficial limitation, perhaps brought on by earlier technical restrictions on
experimental stimuli in pre-modern computer era. In the real world,
distracting information is rarely homogeneous, so it may not be parti-
cularly surprising that humans are able to form accurate templates re-
presenting probability distributions.

Following seminal accounts of priming of pop-out effects (Maljkovic
& Nakayama, 1994), we argue that the representations of distractor
distributions are kept in visual working memory, rather than long-term
memory. Woodman et al (Woodman et al., 2013) have demonstrated
that the representation of a single attended target is transferred from
VWM to long-term memory in 5 to 7 trials. In contrast, we have pre-
viously shown that for simple distractor distributions (such as Gaussian
or uniform) one or two trials are enough for observers to develop a
probabilistic representation of distractors (Chetverikov et al., 2017b).
Representations of more complex distractor distributions take more
time (or trials) to develop, but they also progressively change with
more repetitions: after one or two trials, bimodal distributions are re-
presented as unimodal, and are only later transformed into bimodal
ones. This indicates that more time (trials) is required for sharpening
the representation, not for the transfer to long-term memory.

A question of how the probabilistic templates for rejection are
stored also taps into a more general question, regarding how working
memory templates are stored. Recently, Christophel, Iamshchinina,
Yan, Allefeld, and Haynes (2018) demonstrated that while attended
stimuli in visual working memory are represented both in parietal and
frontal cortex in addition to visual cortex, the latter is not involved in
representations of unattended stimuli. It is possible that rejection
templates similarly do not involve early visual areas. However, unlike
simple unattended items, templates for rejection are actively used by
observers to guide attention. As such, their representation might re-
quire a level of precision only achievable with the recruitment of sen-
sory areas.

How specific are distractor templates? Won and Geng (Won & Geng,
2018) suggested that distractor templates might be more broadly tuned
than target templates. This would allow easy generalization of sup-
pression to similar distractors, while for targets such generalization
might be harmful as it would lead to an increased number of false
alarms. However, the exact costs of generalization for both target and
distractor templates depend on the environment. Specific templates are
necessary when a target is similar to distractors, but generalization is
helpful otherwise. This has indeed been observed by Geng, DiQuattro,
and Helm (Geng, DiQuattro, & Helm, 2017): when a target is similar to
distractors, its template is sharpened and shifted away from distractors.
Moreover, in the real environment we rarely know how exactly the
target or distractors would look under a given illumination and point of
view, making some degree of generalization essential for efficient
search. In contrast, a typical visual search study would require a very
narrow distribution of target features, making a narrow template
useful. Our results suggest that distractor templates are specific enough
to account for bimodality in the distractor distribution. It remains to be
studied whether targets or distractors templates are more specific when
their physical distributions are equally shaped.

In contrast to our previous studies (Chetverikov et al., 2016, 2017b,
2017c, 2017d; Hansmann-Roth, Chetverikov, & Kristjánsson, 2019),
here, we “probed” the distractor representation only at three different

points in the feature space. By using targets with a range of features that
covered the full feature space, our previous research showed that ob-
servers encode the probability distribution of distractors. Here we ex-
tend these findings by showing that observers learn the distribution of
distractors following a single learning streak. This demonstrates that
the previously obtained results are not an artefact of aggregation over
multiple trials but rather a true reflection of the templates’ content.

Our results agree with previous findings on probabilistic concept
learning. Briscoe and Feldman (2011) found that when observers have
to form a decision rule based on a multimodal probability distribution,
they could do this, although performance became worse with increased
mode number. We did not explicitly ask our observers to categorize the
stimuli (as distractors and targets), but it is conceivable that they might
do so if asked.

We should note that one might interpret our results as simply de-
monstrating that humans are capable of learning a nonlinear classifi-
cation rule/decision boundary over a disjoint set in feature space, and
can use this to guide visual search. But we think that this alternative
proposal is unlikely to hold water because for a simple classifier in this
task, learning is not necessary. There is enough information on each
trial to easily tell the target from distractors. Moreover, to include
learning in the algorithm, learning of the target would suffice, as the
target distribution is constant within the learning streak. The fact that
our observers struggle with this shows that they do more than strictly
necessary. Second, and perhaps more importantly, we showed in our
previous work that observers learn the correct probabilities of the dis-
tractor features on average rather than learning a simple decision rule
(Chetverikov et al., 2016, 2017b, 2017c, 2017d). A decision rule model
cannot explain why the response time curves reflect distractor prob-
ability both within and outside the distractor distribution range. By
using double-target search we further demonstrate that these results
cannot be explained by a combination of different decision rules ap-
plied on different test trials.

5. Conclusions

We found that rejection templates are probabilistic, similarly to
items in visual working memory that receive attention (Ma et al.,
2014). However, our study also shows that templates for rejection do
not need to be simple bell-shaped curves, as it is typically modelled in
working memory studies. In contrast, they are dynamically adapted to
task requirements, reflecting the probabilistic nature of the input.
Whether such flexibility also characterizes templates for attended items
remains to be seen. However, our results clearly demonstrate that
probabilistic computations start in the brain even before something is
perceived, to determine what should be prioritized in perception.
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